5

CHAPTER TEST

Two midsegments of $\triangle ABC$ are \overline{DE} and \overline{DF} .

1. Find *DB*.

- **2.** Find *DF*.
- **3.** What can you conclude about \overline{EF} ?

Find the value of x. Explain your reasoning.

4.

5

6.

- **7.** In Exercise 4, is point T on the perpendicular bisector of \overline{SU} ? Explain.
- **8.** In the diagram at the right, the angle bisectors of $\triangle XYZ$ meet at point *D*. Find *DB*.

In the diagram at the right, P is the centroid of $\triangle RST$.

- **9.** If LS = 36, find PL and PS.
- **10.** If TP = 20, find TJ and PJ.
- 11. If JR = 25, find JS and RS.

- **12.** Is it possible to construct a triangle with side lengths 9, 12, and 22? If not, *explain* why not.
- 13. In $\triangle ABC$, AB = 36, BC = 18, and AC = 22. Sketch and label the triangle. List the angles in order from smallest to largest.

In the diagram for Exercises 14 and 15, JL = MK.

- **14.** If $m \angle JKM > m \angle LJK$, which is longer, \overline{LK} or \overline{MJ} ? Explain.
- **15.** If MJ < LK, which is larger, $\angle LJK$ or $\angle JKM$? *Explain*.

Use the diagram in Exercises 17 and 18.

- **17.** *Describe* the range of possible distances from the beach to the movie theater.
- **18.** A market is the same distance from your house, the movie theater, and the beach. Copy the diagram and locate the market.

